
Learning from Inconsistency

Steve Easterbrook

NASA/WVU Software Research Lab
NASA IV&V Facility, 100 University Drive, Fairmont, WV 26554

steve@atlantis.ivv.nasa.gov

Abstract
This position paper argues that inconsistencies that

occur during the development of a software specification
offer an excellent way of learning more about the
development process. We base this argument on our work
on inconsistency management. Much attention has been
devoted recently to the need to allow inconsistencies to
occur during software development, to facilitate flexible
development strategies, especially for collaborative work.
Recent work has concentrated on reasoning in the presence
of inconsistency, tracing inconsistencies with ‘pollution
markers’, and supporting resolution. We argue here that
one of the most important aspects of inconsistency is the
learning opportunity it provides. We are therefore
concerned with how to capture this learning outcome so
that its significance is not lost. We present a small
example of how apprentice software engineers learn from
their mistakes, and outline how an inconsistency
management tool could support this learning. We then
argue that the approach can be used more generally as part
of continuous process improvement.

1 . Introduction

During the development of a specification, software
developers are directed by methods (for technical guidance)
and process models (for co-ordinating development
activities). Although both are prescriptive, neither are
perfect. We argue in this paper firstly that a flexible
approach to the application of methods and process models
is needed, and secondly that much can be learnt from
studying instances of deviation, especially in terms of
process improvement.

In the case of methods, any particular method is
developed from experience on a set of cases in a particular
domain or domains; it is rare that subsequent projects will
map on to the original cases perfectly. In fact, most of the
common methods available now have evolved considerably
from their original design. Poor method fit has hampered
the uptake of CASE tools: the tools often force developers
to apply a method too rigidly for practical use. There is no
reason to assume that because a method is mature enough
to be used widely, it should not also continue to evolve.

In the case of process models, the long term rationale for
process modelling is that it facilitates process

improvement. This implies an acknowledgement that
process models are never perfect, that there is always room
for improvement. In general, there are two ways in which
process improvements are identified: retrospectively or
dynamically [7]. Retrospective improvement identifies
areas of stress in the process enactment, and incorporates
improvements based on hindsight. Dynamic process
improvement allows developers to change the process
model as problems are encountered. In both cases,
adherence to the process model is maintained. In practice, a
combination of the two approaches is desirable,
incorporating the local contextual knowledge available in
dynamic process improvement, with the benefit of
hindsight offered by retrospective improvement. As
Cugola et. al. [2] argue, this can be achieved by allowing
deviations from the prescribed process, and providing
support for dealing with the resulting inconsistencies.

In this paper, we are concerned primarily with (deviation
from) specification methods. However, the arguments
apply equally to the type of fine-grained process modelling
described by Nuseibeh et. al. [9], and perhaps to process
modelling in general.

2 . Inconsistency Management

In Easterbrook et. al. [3] we introduced a broad definition
of inconsistency, as any situation in which a relationship
between two parts of a specification should hold but does
not. This allows us to consider inconsistencies in any
notation. Of course, this also makes inconsistency entirely
method-dependent, as the method (or possibly the process
model) defines which relationships should hold.

The need for a tolerant approach to inconsistency has
been recognised by a number of authors [1; 5; 8; 10].
While these approaches offer ways of proceeding with
development in the presence of inconsistency, and of
analysing and resolving inconsistencies, none have yet
addressed the question of what can be learnt from the
occurrence of inconsistency. We regard the occurrence of
inconsistency as a good indicator of problems in the
prescribed development process. For example, in [4] we
show how analysis of inconsistencies can reveal
conceptual disagreements between developers.

Existing work on managing inconsistency concentrates
on identifying the deviations, and reasoning about the
correctness of the resulting process. For example, Cugola

1111....1111

iiiinnnnppppuuuutttt

uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

1111....3333

mmmmeeeerrrrggggeeee

uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

1111....2222

vvvvaaaalllliiiiddddaaaatttteeee

uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssssuuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss
uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

Figure 1: A portion of a dataflow diagram in which the
author has deviated from the method, as process 1.2
passes its input to its output without transformation.

a) Fork:

1111....1111
iiiinnnnppppuuuutttt

uuuusssseeeerrrr
rrrreeeeccccoooorrrrddddssss

1111....3333

mmmmeeeerrrrggggeeee
uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

1111....2222

vvvvaaaalllliiiiddddaaaatttteeee
uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssssuuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

uuuusssseeeerrrr
rrrreeeeccccoooorrrrddddssss

b) Rename:

1111....1111
iiiinnnnppppuuuutttt

uuuusssseeeerrrr
rrrreeeeccccoooorrrrddddssss

1111....3333

mmmmeeeerrrrggggeeee
uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

1111....2222
vvvvaaaalllliiiiddddaaaatttteeee

uuuusssseeeerrrr
rrrreeeeccccoooorrrrddddssssuuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

vvvvaaaalllliiiiddddaaaatttteeeedddd
uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

c) Bypass:

1111....1111
iiiinnnnppppuuuutttt

uuuusssseeeerrrr
rrrreeeeccccoooorrrrddddssss

1111....3333

mmmmeeeerrrrggggeeee
uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

1111....2222

vvvvaaaalllliiiiddddaaaatttteeee
uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

uuuusssseeeerrrr
rrrreeeeccccoooorrrrddddssss

d) Delete:

1111....1111

iiiinnnnppppuuuutttt
uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

1111....3333
mmmmeeeerrrrggggeeee

uuuusssseeeerrrr
rrrreeeeccccoooorrrrddddssss

1111....2222

vvvvaaaalllliiiiddddaaaatttteeee
uuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssssuuuusssseeeerrrr

rrrreeeeccccoooorrrrddddssss

Figure 2: Four possible action to correct the mistake shown in figure 1.

et. al. [2] introduce ‘pollution markers’, to track deviations
from a process model, but do not offer any way of
identifying lessons from such deviations. In the next
section we present a small example, to show how learning
can result from such deviations.

3 . Example

When students first learn to use dataflow diagrams, they
make a number of conceptual errors. For example, they
may fail to distinguish between physical dataflow and
logical dataflow, because they confuse the abstract notion
of process with the concrete notions of place or person.
Partly, this is because software engineering students take a
while to become comfortable with the use of abstraction.

This leads to a number of typical mistakes, of which we
will consider just one: a failure to appreciate that a
dataflow diagram is concerned with transformation of data.

Figure 1 shows a portion of a dataflow diagram
illustrating a typical mistake: the data item ‘user records’
is shown as both an input to and an output from the
process ‘validate user records’, without any apparent
transformation. This is a typical naive attempt to model an
observed system in which (say) paper files are passed
around an office. This diagram is inconsistent according
the semantic rules for dataflow diagrams.

We can recognise this as an inconsistency, using any
one of a number of techniques for detecting inconsistency.
Indeed we would expect a specification tool to detect such
problems. The detection of the inconsistency is not what
we are interested in here, but rather, what the student then
does. Imagine the student is using a CASE tool, and the
tool reports the inconsistency in the above diagram. The
tool may even provide some analysis of the problem,
perhaps identifying the edit action that led to the
inconsistency. However, the student still does not
understand the problem, because he has not grasped the
notion of data transformation. The student needs some
guidance on what the options are from this position.

A brief analysis of the mistake leads us to suggest four
likely options (see figure 2):
(a) fork: the same item of data should be passed to both

processes 1.2 and 1.3;
(b) rename: process 1.2 does in fact transform the data

before passing it on to 1.3;
(c) bypass: process 1.2 doesn’t need this data item, and it

should be passed straight to 1.3
(d) delete: process 1.3 doesn’t need this data item, and the

flow to 1.3 should be deleted.
We have given each of the actions a name for convenience:
these could be offered as a menu of actions in a support
tool. There are of course other actions that could also be
taken that may resolve or ameliorate the inconsistency; we
have merely selected the most likely.

Note at this point that the names of the processes
suggest that the most likely choice is action (b). However,
this is only an informal observation, available because the
student has chosen particularly redundant names for the
processes. In the general case, it is not possible to extract
such semantic information to determine which action
should be taken.

3.1. Prescribing Repair Actions:

Although the example and the four actions are relatively
simple, we can imagine a large number of possible
inconsistencies that can arise during software specification,
and it is worth asking how feasible it is to generate a list
of suggested actions for each possible inconsistency. There
are three main sources of information from which the list
of possible actions is constructed:
• Initial observations by the method designer - as each

inconsistency rule must be explicitly defined, the
designer may also be able to suggest some basic repair
actions

• Analysis of the inconsistency rule - some actions can
derived directed from the formal representation of the
inconsistency rule. For example, any action that negates
a precondition of the rule is a candidate for suggestion:
actions (b) and (d) above have this effect, as they remove
one of the items in the specification that caused the rule
to fail.

• Past experience - each time the inconsistency occurs and
is resolved, it provides data about possible actions. This
is one of the learning outcomes we described below.

In addition to identifying possible actions, it is possible to
reason about which to recommend. Such reasoning can
take into account the context under which the
inconsistency occurred. If we have available the
development history of the specification, including the
actions that led to the inconsistency, then some choices
can be eliminated as they will be retrograde steps.
Similarly, if the inconsistency occurs between parts of the
specification developed by different people, and one has
been updated more recently than another, then a transfer of
information between the developers might be needed.
Again, we expect to build up a set of heuristics to guide
the selection as we gain more experience with the
approach.

To explore these issues we have developed a framework
for representing repair actions, in which each action has a
name, for menu selection; pre- and post-conditions, to
facilitate reasoning about its effects; and a rationale, to
offer informal guidance about its applicability [3].

3.2. Learning Outcomes

There are five ways in which learning may occur in this
example:
1) The developer learns what actions the method

prescribes (or more often, proscribes). In this case the
developers are students, making a rather basic mistake,
and a tool that merely enforced the method might have
induced this learning outcome. However, the lesson is
reinforced by allowing the developer to explore the
consequences of not obeying the rules.

2) The developer learns why it is that the method
prescribes a particular way of working. In our example,
this is a more important learning outcome that the first
one, because it helps address the student’s underlying
conceptual confusion about data transformation in
dataflow diagrams. It is unlikely that students would
gain this learning outcome if they were prevented from
making the mistake, unless a tutor observed their
difficulty.

3) The method designer learns about whether the method
needs updating. In our rather simple example, the
method does not need changing, but one could equally
well envisage an example in which the inconsistency
turned out to be a new exceptional case, in which an
alternative approach is needed. This is especially likely
with experienced developers, who would normally have
good reason to deviate from the method. One of the
repair actions available in our framework is to disable
the consistency rule. If the developer chooses this
action, this is a strong indicator that there is a problem
with method fit.

4) The method designer learns more information about
how to guide subsequent developers. The resolution
action chosen by the developers, and the context in
which the choice was made, can be taken into account
when reasoning about recommendations next time that
inconsistency occurs. In this way a case library can be
built up for various classes of inconsistency.

5) The developer learns more about the system being
specified, because correction of the problem focuses
attention on areas that are poorly understood. In our
example, the student may need to go back to the domain
and study further how data is passed around.

The first two of these outcomes are limited to the
developers involved, and can play a useful role in training;
however, as with most forms training it is impossible to
observe the learning taking place directly. The next two
outcomes form part of institutional learning, or process
improvement. Both these types can be captured directly by
the toolset, either as data for a process review activity, or
as data for case-based approach to guiding development
activities. The fifth outcome improves the quality of the
specification, and can be seen as a validation activity.

There is one further learning outcome, not demonstrated
in the example, but which we can expect to apply in team
projects:

6) The developer learns more about how colleagues
understand the system being specified. In cases where
inconsistencies arise between portions of the
specification developed by different people, they each
may gain some insight into one another’s view. In other
cases the inconsistency may cause the developer to
consult other members of the team.
It is unlikely that all six learning outcomes will apply

at once, but we would expect at least one of them to apply
each time an inconsistency occurs.

4 . Empirical Experience

Having observed that exploration of inconsistency can
lead to learning, we are currently investigating how to
facilitate this learning process. We suspect that in many
projects, the opportunity for this kind of learning is
wasted. Our investigations are based on empirical work in
conjunction with analysts currently working with NASA
to assess the software requirements specifications for the
International Space Station, as part of an Independent
Verification and Validation (IV&V) contract.

We have been working on improvements to the methods
used for performing traceability and completeness analysis
on the Fault Detection, Isolation and Recovery (FDIR)
requirements. At present, the development contractor
produces failure models using the multigraph modelling
method and associated tools. These models are then used to
generate the FDIR requirements, which are currently
represented in natural language, as part of a SRS
conforming to DOD-STD-2167A. The IV&V team
receives the SRS and validates it using their domain
knowledge, and their own modelling tools. Our work
concerns the introduction of a formal method that will
allow the IV&V team to perform completeness analyses
on these requirements. The method is based on SCR [6],
and makes use of logic tables to represent state changes
and the conditions under which they occur.

During the initial exploration of this new method, we
have witnessed a number of inconsistencies occurring, and
have used these as a way of learning more about how to fit
the method to the project. We have also observed how
investigation of inconsistency has helped us to develop a
better understanding of the system being specified.

For example, one commonly occurring inconsistency in
our initial trials with the method was that phrases
expressing conditions in the SRS would be re-worded
when they were placed in the tables. We had expected that
a consistency check on the wording of these phrases could
help with traceability and validation of the tables. In
practice, the wording in the original phrases often did not
make sense when removed from their original paragraphs.
Forcing the two to be consistent is possible, but would
reduce the readability of the tables. Hence, our preference is
to allow the inconsistencies to stand for now, and to
develop method guidance for certain kinds of re-wordings.

A second example arises when the requirements are
analysed by different people. In some cases, the tabular

representations produced by different people to represent
the same requirement have differed in the number of
conditions identified, and the ways in which conditions are
combined. Literally, the tables had different numbers of
both rows and columns. Investigation has demonstrated
that the style used in the natural language specifications is
inherently ambiguous. As a result we are exploring
improvements in the way in which these original
requirements are expressed, including introducing the
tabular form earlier in the process.

Both of these examples show the method designer
learning about how the method can be improved to fit the
practice: learning outcomes (3) and (4) above. Whether we
solve the problems by altering the method, or by evolving
guidance on how to cope depends to some extent on the
cost of changing the existing process. Most importantly,
we have used the occurrence of inconsistencies to
strengthen the argument for process change. Previous
arguments about the ambiguity of natural language have
foundered on the fact that replacing them completely with
formal notations is prohibitively expensive. Now,
however, we can show that certain kinds of ambiguity lead
to specific inconsistencies. This allows us to identify
smaller, incremental, changes to the process.

We have also observed how the occurrence of
inconsistency leads to a better understanding of the system
being specified. For example, one of the consistency
checks we applied revealed that a particular mode was
unreachable (Heitmeyer et. al. [6] describe this kind of
consistency checking in more detail). Investigation
revealed that the phrases “the current channel has not been
reset within the last major [processing] frame” and “the
current channel has not been reset within the major
[processing] frame” had been interpreted as semantically
equivalent. In fact the former refers to the previous
processing frame, while the latter refers to the current
processing frame. This distinction reveals an important
aspect of the underlying model which had not been
appreciated by our team: fault recovery actions can depend
on events in both the previous and the current processing
frames. We had assumed that only events in the previous
processing frame were available for monitoring. Hence, the
inconsistency allowed us to improve our understanding of
the requirements.

The learning outcomes we have described in this section
occurred only through careful (manual) analysis of
particular inconsistencies. For learning associated with
method improvement, this may be reasonable: this
learning takes place outside the critical path of a project,
and the time and effort needed may be reasonable. For other
types of learning, scheduling deadlines may not permit the
kind of reflection required. Hence our next step is to
investigate how better to support the link between the
actions taken to handle an inconsistency and the potential
learning outcomes, so that the learning outcome is not
lost. This will require further empirical work with the
tools in place, to observe the conditions that help or hinder
the learning effect.

5 . Conclusions

A flexible approach to the application of methods allows
designers the freedom to adopt development strategies that
are appropriate to their particular needs. Rather than rigidly
enforcing adherence to a method or process model,
developers should be allowed to deviate, and to analyse the
consequences. It is more important to be able to recognise
that a deviation has occurred, than to prevent it. The
ability to deviate from the prescribed method is important
because:
• the method is never perfect
• every project is different
• developers have local expertise
• people learn best from trying things out
• deviations provide data on how to improve the method
This last point is particularly important. If changes to the
method are inspired merely by stress points when the
method is rigidly enforced, we will know where changes
are needed, but not what those changes might be. If, on the
other hand, changes are inspired by observed deviations
from the method, the form and context of the deviation
provides a great deal more data on how to improve the
model.

This is not to say that every inconsistency would lead to
an improvement in the method (or process model), but
rather that every deviation has a potential learning
outcome. Some inconsistencies may indicate that a method
improvement is needed. Others may just provide a lesson
about why the method is the way it is, and that it should
be applied more rigidly in that respect in the future. Most
importantly, it is not necessarily the case that the latter
type of lesson is already known. Our example focused on
apprentices, who are more in need of such lessons than
experienced developers. However, even experienced
developers and mature methods still need to learn. A
commitment to continuous improvement implies a
commitment to checking whether methods and process
models are prescribing the right behaviour, if and when
experienced developers have cause to doubt it.

5 . Further Work

We are following up the ideas presented in this paper in
a number of ways:
• further empirical observations of the types of

inconsistency that occur in specification development,
and the ways in which they induce learning.

• development of heuristics to improve the guidance
offered for particular types of inconsistency, including
reasoning about the development history (Eg. so that a
recommended action does not take the developer back to
a form that has already been considered and abandoned)

• case-based support for reasoning about which action is
most likely by comparing the current situation with
previous occurrences of the mistake.

• exploration of ways to alert developers to possible

learning outcomes, using on our framework for
inconsistency management.

6 . Acknowledgements

Thanks to Bashar Nuseibeh, Jack Callahan, Chuck
Neppach, Todd Montgomery, Jeff Morrison and Amer Al-
Rawas for contributions to the ideas described here. This
work is supported by NASA through cooperative
agreement NCCW-0040.

7 . References

[1] Balzer, R. (1991). Tolerating Inconsistency. In
Proceedings, 13th International Conference on Software
Engineering (ICSE-13), Austin, Texas, USA, pp158-
165.

[2] Cugola, G., Di Nitto, E., Ghezzi, C., & Mantione, M.
(1995). How to Deal with Deviations During Process
Model Enactment. In Proceedings,17th International
Conference on Software Engineering, Seattle,
Washington, pp265-273.

[3] Easterbrook, S. M., Finkelstein, A. C. W., Kramer, J.,
& Nuseibeh, B. A. (1994). Co-ordinating Distributed
ViewPoints: the anatomy of a consistency check.
Concurrent Engineering: Research and Applications,
2(3), 209-222.

[4] Easterbrook, S. M., & Nuseibeh, B. A. (1995).
Managing Inconsistencies in an Evolving
Specification. In Second IEEE Symposium on
Requirements Engineering, York, UK, pp48-55.

[5] Gabbay, D., & Hunter, A. (1991). Making
Inconsistency Respectable: A Logical Framework for
Inconsistency in Reasoning, Part 1 - A Position Paper.
In Proceedings, Fundamentals of Artificial Intelligence
Research ‘91,, pp19-32.

[6] Heitmeyer, C. L., Labaw, B., & Kiskis, D. (1995).
Consistency Checking of SCR-Style Requirements
Specifications. In Second IEEE Symposium on
Requirements Engineering, York, UK, pp56-63.

[7] Jamart, P., & van Lamsweerde, A. (1994). A Reflective
Approach to Process Model Customisation, Enactment
and Evolution. In Third International Conference on the
Software Process, Reston, Virginia.

[8] Narayanaswamy, K., & Goldman, N. (1992). “Lazy”
Consistency: A Basis for Cooperative Software
Development. In Proceedings, International Conference
on Computer-Supported Cooperative Work (CSCW’92),
Toronto, Canada, pp257-264.

[9] Nuseibeh, B., Finkelstein, A. C. W., & Kramer, J.
(1993). Fine-Grain Process Modelling. In Proceedings,
Seventh International Workshop on Software
Specification and Design (IWSSD-7), Redondo Beach,
CA, USA, pp42-46.

[10] Schwanke, R. W., & Kaiser, G. E. (1988). Living With
Inconsistency in Large Systems. In J. F. H. Winkler
(Ed.), Proceedings of the International Workshop on
Software Version and Configuration Control, Grassau,
Germany, pp98-118.

